Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling.

Identifieur interne : 000194 ( Main/Exploration ); précédent : 000193; suivant : 000195

Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling.

Auteurs : Carolyn Churchland [Canada] ; Sue J. Grayston [Canada]

Source :

RBID : pubmed:24917855

Abstract

Mycorrhizal associations are ubiquitous and form a substantial component of the microbial biomass in forest ecosystems and fluxes of C to these belowground organisms account for a substantial portion of carbon assimilated by forest vegetation. Climate change has been predicted to alter belowground plant-allocated C which may cause compositional shifts in soil microbial communities, and it has been hypothesized that this community change will influence C mitigation in forest ecosystems. Some 10,000 species of ectomycorrhizal fungi are currently recognized, some of which are host specific and will only associate with a single tree species, for example, Suillus grevillei with larch. Mycorrhizae are a strong sink for plant C, differences in mycorrhizal anatomy, particularly the presence and extent of emanating hyphae, can affect the amount of plant C allocated to these assemblages. Mycorrhizal morphology affects not only spatial distribution of C in forests, but also differences in the longevity of these diverse structures may have important consequences for C sequestration in soil. Mycorrhizal growth form has been used to group fungi into distinctive functional groups that vary qualitatively and spatially in their foraging and nutrient acquiring potential. Through new genomic techniques we are beginning to understand the mechanisms involved in the specificity and selection of ectomycorrhizal associations though much less is known about arbuscular mycorrhizal associations. In this review we examine evidence for tree species- mycorrhizal specificity, and the mechanisms involved (e.g., signal compounds). We also explore what is known about the effects of these associations and interactions with other soil organisms on the quality and quantity of C flow into the mycorrhizosphere (the area under the influence of mycorrhizal root tips), including spatial and seasonal variations. The enormity of the mycorrhizosphere biome in forests and its potential to sequester substantial C belowground highlights the vital importance of increasing our knowledge of the dynamics of the different mycorrhizal functional groups in diverse forests.

DOI: 10.3389/fmicb.2014.00261
PubMed: 24917855
PubMed Central: PMC4042908


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling.</title>
<author>
<name sortKey="Churchland, Carolyn" sort="Churchland, Carolyn" uniqKey="Churchland C" first="Carolyn" last="Churchland">Carolyn Churchland</name>
<affiliation wicri:level="1">
<nlm:affiliation>Belowground Ecosystem Group, Department of Forest and Conservation Sciences, University of British Columbia Vancouver, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Belowground Ecosystem Group, Department of Forest and Conservation Sciences, University of British Columbia Vancouver, BC</wicri:regionArea>
<wicri:noRegion>BC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grayston, Sue J" sort="Grayston, Sue J" uniqKey="Grayston S" first="Sue J" last="Grayston">Sue J. Grayston</name>
<affiliation wicri:level="1">
<nlm:affiliation>Belowground Ecosystem Group, Department of Forest and Conservation Sciences, University of British Columbia Vancouver, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Belowground Ecosystem Group, Department of Forest and Conservation Sciences, University of British Columbia Vancouver, BC</wicri:regionArea>
<wicri:noRegion>BC</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24917855</idno>
<idno type="pmid">24917855</idno>
<idno type="doi">10.3389/fmicb.2014.00261</idno>
<idno type="pmc">PMC4042908</idno>
<idno type="wicri:Area/Main/Corpus">000196</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000196</idno>
<idno type="wicri:Area/Main/Curation">000196</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000196</idno>
<idno type="wicri:Area/Main/Exploration">000196</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling.</title>
<author>
<name sortKey="Churchland, Carolyn" sort="Churchland, Carolyn" uniqKey="Churchland C" first="Carolyn" last="Churchland">Carolyn Churchland</name>
<affiliation wicri:level="1">
<nlm:affiliation>Belowground Ecosystem Group, Department of Forest and Conservation Sciences, University of British Columbia Vancouver, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Belowground Ecosystem Group, Department of Forest and Conservation Sciences, University of British Columbia Vancouver, BC</wicri:regionArea>
<wicri:noRegion>BC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grayston, Sue J" sort="Grayston, Sue J" uniqKey="Grayston S" first="Sue J" last="Grayston">Sue J. Grayston</name>
<affiliation wicri:level="1">
<nlm:affiliation>Belowground Ecosystem Group, Department of Forest and Conservation Sciences, University of British Columbia Vancouver, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Belowground Ecosystem Group, Department of Forest and Conservation Sciences, University of British Columbia Vancouver, BC</wicri:regionArea>
<wicri:noRegion>BC</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mycorrhizal associations are ubiquitous and form a substantial component of the microbial biomass in forest ecosystems and fluxes of C to these belowground organisms account for a substantial portion of carbon assimilated by forest vegetation. Climate change has been predicted to alter belowground plant-allocated C which may cause compositional shifts in soil microbial communities, and it has been hypothesized that this community change will influence C mitigation in forest ecosystems. Some 10,000 species of ectomycorrhizal fungi are currently recognized, some of which are host specific and will only associate with a single tree species, for example, Suillus grevillei with larch. Mycorrhizae are a strong sink for plant C, differences in mycorrhizal anatomy, particularly the presence and extent of emanating hyphae, can affect the amount of plant C allocated to these assemblages. Mycorrhizal morphology affects not only spatial distribution of C in forests, but also differences in the longevity of these diverse structures may have important consequences for C sequestration in soil. Mycorrhizal growth form has been used to group fungi into distinctive functional groups that vary qualitatively and spatially in their foraging and nutrient acquiring potential. Through new genomic techniques we are beginning to understand the mechanisms involved in the specificity and selection of ectomycorrhizal associations though much less is known about arbuscular mycorrhizal associations. In this review we examine evidence for tree species- mycorrhizal specificity, and the mechanisms involved (e.g., signal compounds). We also explore what is known about the effects of these associations and interactions with other soil organisms on the quality and quantity of C flow into the mycorrhizosphere (the area under the influence of mycorrhizal root tips), including spatial and seasonal variations. The enormity of the mycorrhizosphere biome in forests and its potential to sequester substantial C belowground highlights the vital importance of increasing our knowledge of the dynamics of the different mycorrhizal functional groups in diverse forests. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">24917855</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling.</ArticleTitle>
<Pagination>
<MedlinePgn>261</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2014.00261</ELocationID>
<Abstract>
<AbstractText>Mycorrhizal associations are ubiquitous and form a substantial component of the microbial biomass in forest ecosystems and fluxes of C to these belowground organisms account for a substantial portion of carbon assimilated by forest vegetation. Climate change has been predicted to alter belowground plant-allocated C which may cause compositional shifts in soil microbial communities, and it has been hypothesized that this community change will influence C mitigation in forest ecosystems. Some 10,000 species of ectomycorrhizal fungi are currently recognized, some of which are host specific and will only associate with a single tree species, for example, Suillus grevillei with larch. Mycorrhizae are a strong sink for plant C, differences in mycorrhizal anatomy, particularly the presence and extent of emanating hyphae, can affect the amount of plant C allocated to these assemblages. Mycorrhizal morphology affects not only spatial distribution of C in forests, but also differences in the longevity of these diverse structures may have important consequences for C sequestration in soil. Mycorrhizal growth form has been used to group fungi into distinctive functional groups that vary qualitatively and spatially in their foraging and nutrient acquiring potential. Through new genomic techniques we are beginning to understand the mechanisms involved in the specificity and selection of ectomycorrhizal associations though much less is known about arbuscular mycorrhizal associations. In this review we examine evidence for tree species- mycorrhizal specificity, and the mechanisms involved (e.g., signal compounds). We also explore what is known about the effects of these associations and interactions with other soil organisms on the quality and quantity of C flow into the mycorrhizosphere (the area under the influence of mycorrhizal root tips), including spatial and seasonal variations. The enormity of the mycorrhizosphere biome in forests and its potential to sequester substantial C belowground highlights the vital importance of increasing our knowledge of the dynamics of the different mycorrhizal functional groups in diverse forests. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Churchland</LastName>
<ForeName>Carolyn</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Belowground Ecosystem Group, Department of Forest and Conservation Sciences, University of British Columbia Vancouver, BC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grayston</LastName>
<ForeName>Sue J</ForeName>
<Initials>SJ</Initials>
<AffiliationInfo>
<Affiliation>Belowground Ecosystem Group, Department of Forest and Conservation Sciences, University of British Columbia Vancouver, BC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">LMWOA</Keyword>
<Keyword MajorTopicYN="N">arbuscular mycorrhizae</Keyword>
<Keyword MajorTopicYN="N">carbon cycling</Keyword>
<Keyword MajorTopicYN="N">ectomycorrhizae</Keyword>
<Keyword MajorTopicYN="N">mycorrhizosphere</Keyword>
<Keyword MajorTopicYN="N">plant-microbe interactions</Keyword>
<Keyword MajorTopicYN="N">root exudates</Keyword>
<Keyword MajorTopicYN="N">signaling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>05</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>05</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24917855</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2014.00261</ArticleId>
<ArticleId IdType="pmc">PMC4042908</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2000 Oct 13;290(5490):291-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11030643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2000 Dec;9(12):1985-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11123611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2001 May 1;16(5):248-254</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11301154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2001 Feb;21(2-3):71-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11303651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):789-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Sep 20;413(6853):297-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11565029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Apr;12(2):83-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12035731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2003 Apr;13(2):85-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 16;300(5622):1138-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12750519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2003 Jun;12(6):1607-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12755888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1962 Mar;27:509-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14476553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2004 Mar;139(1):89-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14727173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2004 May;139(4):551-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15042460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2004 Jul;48(1):29-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15085299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Jun;15(4):235-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15221576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Dec;24(12):1369-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15465699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Nov;15(7):505-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15830210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Aug 12;309(5737):1047</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16099977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Sep;167(3):869-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2005 Sep;29(4):795-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16102603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Oct;168(1):205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16159334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Nov;168(2):293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16219069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2005 Nov;50(4):614-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16333717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2006 Jan;8(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16343316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(2):367-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2006 Jun;148(3):447-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16496179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 May;63(5):1852-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;170(1):153-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16539612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2006 Apr;56(1):34-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16542403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:233-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 May;72(5):3550-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16672502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Apr;87(4):816-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16676524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 May;87(5):1302-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16761608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(1):41-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Jul;4(7):e239</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16822096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Jul;16(5):299-363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Nov;16(8):533-541</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16983568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2007 Jan;150(4):590-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17033802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2006 Dec;8(12):2224-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17107563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(3):611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17244056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Jun;17(4):299-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17260146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Apr;10(2):204-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17291823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 2006 Dec;59(12):801-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17323648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2007 Oct;54(3):406-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17334967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 May;73(9):3019-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17351101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(2):430-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17388905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Aug;27(8):1103-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17472937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2007 Aug;61(2):295-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17535297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2007 Nov;154(2):327-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17657512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(4):743-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17688589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2008 Apr;55(3):500-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17786504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(1):22-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17803639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Feb;74(3):738-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18083870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Mar;146(3):875-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Mar 6;452(7183):88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(5):1115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):479-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18631297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Sep;74(18):5792-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18658284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2008 Oct;54(10):876-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18923557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2009 Feb;19(2):81-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18941805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jan;75(2):308-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jan;14(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19056309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Feb;22(2):115-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Mar;29(3):445-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19203968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2009 Jun;3(6):738-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19279669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2009 May;83(1):161-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19308401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2009 Oct;19(8):559-570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(2):349-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19496953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2009;63:541-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Oct;70(1):151-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19656196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2009 Dec;11(12):3166-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19671076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2002 Mar 1;39(3):219-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19709201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2002 Jul 1;41(1):37-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19709237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2004 Jan 1;47(1):31-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2004 Apr 1;48(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Nov;75(22):7079-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19783744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jan;185(1):189-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2009 Nov;10(6):735-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19849781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2010 Feb;71(2):186-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19889031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2010 Feb;71(2):169-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20002182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Mar;76(6):1831-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Apr 15;464(7291):1033-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20348908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2010 Feb;91(2):485-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20392013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):292-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2010 Aug;60(2):331-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20577876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2011 Mar;5(3):389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20882059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2010 Jul 27;1:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20975705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2002 Mar-Apr;94(2):190-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21156488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2011 Feb;14(2):187-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21176050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2011 Apr;14(4):349-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21303437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2011 Jul;62(1):205-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21394607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Soil Biol Biochem. 2011 Mar;43(3):551-558</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21412402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):451-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21489861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2011 Oct;167(2):535-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21562866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Comp Biol. 2002 Apr;42(2):352-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21708728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 26;21(14):1197-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 26;21(14):1204-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Jun;32(6):799-813</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22210530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Jun;32(6):648-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22278378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Apr;78(8):3020-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22307291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2666-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22308426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(3):e1002515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22396640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Aug;78(16):5520-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22660713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Jun;32(6):776-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22700544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2012 Sep;15(9):1042-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22776588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2012 Nov;29(11):1288-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22918379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Aug 31;337(6098):1084-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22936776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2012 Nov 15;26(21):2493-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23008066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2013 Mar;83(3):585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23013386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Mar 29;339(6127):1615-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23539604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(1):41-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23713553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Soil Biol Biochem. 2012 Dec;55:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24371363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1979 Jan;38(1):93-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28309073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 1989 Aug;112(4):495-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29265428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1993 Apr;2(2):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8180733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1998 Apr;22(1):21-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9640645</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Churchland, Carolyn" sort="Churchland, Carolyn" uniqKey="Churchland C" first="Carolyn" last="Churchland">Carolyn Churchland</name>
</noRegion>
<name sortKey="Grayston, Sue J" sort="Grayston, Sue J" uniqKey="Grayston S" first="Sue J" last="Grayston">Sue J. Grayston</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000194 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000194 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24917855
   |texte=   Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24917855" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020